@)
updraft(,ﬁ\

AlIM Methodology

Anadlyze your applications JC)

Describe and inventory your code - Document application components and code size
> Measure code complexity and analyze identifiers

- Uncover replicated, dead or unreachable code

Symbolically interpret code > Map source code relationships and interdependencies
> Visualize data flow, code flow and data lineage

> Analyze dead code, external databases accessed and
other called programs

Understand what your code does = Extract and analyze business rules
> Analyze features

Improve your applications

Enhance code quality and > Reduce complexity: remove dead code, reduce

maintainability replication and remove GOTO statements
° Simplify naming of identifiers and methods

° Conform to coding standards

Increase performance > Systematically improve algorithms

- Replace a file used for temporary storage with
an in-memory database

Expand scalability - Refactor for a service-oriented architecture using
microservices

- Refactor for data microservices

Migrate to alternative platforms %’

- Identify a target language — translate COBOL to Java, for example

- Determine an execution environment — move from IBM mainframe with
CICS to Linux with JBoss

- Database — adapt code to use PostgreSQL versus DB2
- User interface — move from CICS with BMS to Angular

- Cloud — refactor to operate in a cloud framework; dockerize or migrate
to AWS/Azure

- Optimize file handling — move from flat files to a database and change code
to handle ASCII code instead of EBCDIC, for example

Copyright © 2020 Updraft



