
AIM Methodology

Migrate to alternative platforms

Analyze your applications

Improve your applications

Copyright © 2020 Updraft

Symbolically interpret code Map source code relationships and interdependencies

Visualize data flow, code flow and data lineage

Analyze dead code, external databases accessed and
other called programs

Document application components and code size

Measure code complexity and analyze identifiers

Uncover replicated, dead or unreachable code

Describe and inventory your code

Refactor for a service-oriented architecture using
microservices

Refactor for data microservices

Expand scalability

Reduce complexity: remove dead code, reduce
replication and remove GOTO statements

Simplify naming of identifiers and methods

Conform to coding standards

Enhance code quality and
maintainability

Systematically improve algorithms

Replace a file used for temporary storage with
an in-memory database

Increase performance

Identify a target language — translate COBOL to Java, for example

Determine an execution environment — move from IBM mainframe with
CICS to Linux with JBoss

Database — adapt code to use PostgreSQL versus DB2

User interface — move from CICS with BMS to Angular

Cloud — refactor to operate in a cloud framework; dockerize or migrate
to AWS/Azure

Optimize file handling — move from flat files to a database and change code
to handle ASCII code instead of EBCDIC, for example

Understand what your code does Extract and analyze business rules

Analyze features

